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A schematic map

[http://www.nationalrail.co.uk]



More than transit maps!

[Wolf & Flather, 2005]

[http://ftrctlb.com/node/169]

[Zuidhof, 1932]
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Requirements

Few geometric objects
At most k lines (parameter)

Restricted geometry
Angles in set C (parameter)

Topology
Correct neighbors

Resemblance
Area preservation
Measure something...?
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Let’s try again: Fréchet distance

“longest distance between boundaries, accounting for continuity”



Formalizing “resemblance”?

“the best” “worse”

Once more: cyclic dynamic time warp distance

“Sum of distances between vertices, accounting for continuity”
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Algorithm

1. restrict angles to C

2. repeat

3. perform a pair of edge-moves

69 edges 184 edges 68 edges 34 edges

4. until at most k lines
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Edge-moves

3. perform a pair of edge-moves

But which pair do we pick?

Smallest area (symmetric difference)

Compensate with nearest along boundary



Termination

Can we always reach k?

4. until at most k lines



Termination

Can we always reach k?

4. until at most k lines

Theorem.
Any nonconvex polygon admits a pair of edge-moves.

⇒ For polygons, we can always reach 2|C|



Termination

Can we always reach k?

4. until at most k lines

Theorem.
Any nonconvex polygon admits a pair of edge-moves.

⇒ For polygons, we can always reach 2|C|

How fast is the algorithm?

Naive: O(n3)



Termination

Can we always reach k?

4. until at most k lines

Theorem.
Any nonconvex polygon admits a pair of edge-moves.

⇒ For polygons, we can always reach 2|C|

How fast is the algorithm?

Using locality of change: O(n2)

Naive: O(n3)



Schematization styles



Do we really need lines?

[Brunet, 1991] [Brunet & Dollfus, 1991]
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Circular arcs

Change edge-moves to replacements

2-to-1

3-to-2

Replace sequence of arcs by fewer arcs

Turn lines into arcs
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Curviness

Control curviness

Central angle α as weight

Gives curved, regular and flat style
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Recovering solutions

Run once, obtain all solutions
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Lines vs arcs

0.1

0.3

0.5
worth

Straight

Aesthetics Simplicity

100%

60%

20%

Flat Regular Curvy

0.1

0.3

0.5
worth

Recognizability

accuracy



“Nongeographic” schematization

What happens if we get rid of all geography?

Draw a graph G with low complexity

Problem.
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Graph complexity

Complexity of a graph G = (V,E)

Usually |V |, |E|, etc.

Says nothing about how complex a drawing is
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Visual complexity

Planar graphs

Number of geometric objects for drawing

9



Visual complexity

Planar graphs

Number of geometric objects for drawing

9 line segments for 18 edges



Known results

Lower Upper

S
eg

m
en

ts

Class

Triangulation

Tree

2- and 3-trees 2V 2V

3-connected 2V 5V/2

Planar 16V/3− E

7V/32V

2V

K/2 K/2

[Durocher, Mondal, 2014]

[Durocher, Mondal, 2014]

[Durocher et al, 2013]
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3-connected
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11E/18

2E/3

[Schulz, 2013]
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The remainder of this talk

Line-segment drawings

Two new algorithms

n/2 + 3 segments

Planar cubic 3-connected graphs

[Mondal et al, 2013]

Resolve flaw & improved

Experimental comparison
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Deconstruction algorithm

Theorem.

Every graph can be constructed

maintaining a given outer face.

Insertion

with insertions

from the triangular prism
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Algorithm

1. Draw triangular prism

2. Construct graph, maintaining drawing

Insertion
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Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex



Postprocessing

Set of harmonic equations [Aerts & Felsner, 2013 ]

u = λv + (1− λ)w, for λ ∈ (0, 1)
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Postprocessing

Set of harmonic equations

Solve for uniform edge length, i.e. λ = 1/2

[Aerts & Felsner, 2013 ]

u = λv + (1− λ)w, for λ ∈ (0, 1)

v

w

u

v

w

u



[Mondal et al, 2013]
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[Mondal et al, 2013]

“Grid”

n/2 + 4 segments

6 slopes

(n/2 + 1)2 grid

“Min”

n/2 + 3 segments

7 slopes

Not on a grid

Resolved flaw in algorithm Reduced to 6 slopes

On a grid



Three algorithms

Deconstruction Windmill [Mondal et al, 2013]
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Measuring layout quality

2000 graphs with 24 . . . 30 vertices

Six measures for each graph-algorithm pair

Angular resolution

Edge length

Face aspect ratio

using plantri

Average and worst-case



Angular resolution

DEC-ALT

WIN

MON-GRID

MON-MIN

Average

Minimum
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DEC
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MON-MIN

DEC



Edge length

DEC-ALT

WIN
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MON-MIN

Average

Maximum
0 100%

0 100%
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Face aspect ratio

DEC-ALT

WIN

MON-GRID

MON-MIN

Average

Minimum
0 1

0 1
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MON-MIN
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Experiment summary

WIN

DEC

MON

WIN DEC MON

“Wins” “Wins” minus “Losses”

-6 6-5 -4 -3 -2 -1 0 1 2 3 4 5

WIN DEC MON
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Conclusion

Minimal visual complexity

Future work

Closing gap for other classes

Circular arcs

Visual complexity ∼ observer’s assessment?

Visual complexity ∼ cognitive load?

Two new algorithms

Experiments

Fixed and improved [Mondal et al, 2013]

Best depends on measure



Thank you for listening!

Wouter Meulemans <wouter.meulemans@city.ac.uk>

[Van Goethem, Meulemans, Speckmann, Wood, TVCG, 2015]

[Igamberdiev, Meulemans, Schulz, GD, 2015]

[Buchin, Meulemans, Van Renssen, Speckmann, ACM TSAS, to appear]
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