
Schematization

with and without geography

Middlesex University
November 17th, 2015

Wouter Meulemans

A schematic map

[http://www.nationalrail.co.uk]

More than transit maps!

[Wolf & Flather, 2005]

[http://ftrctlb.com/node/169]

[Zuidhof, 1932]

Methods
B

éz
ie

r
C

ir
cu

la
r

ar
cs

L
in

es

Networks Regions

[Fink et al, 2013]

[Fink et al, 2014]

[Van Goethem et al, 2013]

[Nöllenburg & Wolff, 2010]

[Buchin et al, 2011]

[Drysdale et al, 2008]

[Van Goethem et al, 2015]

[Merrick & Gudmundsson, 2007]

[Cabello et al, 2005]

[Cicerone & Cermignani, 2012]

[Van Goethem et al, 2013]

[Heimlich & Held, 2008][Van Goethem et al, 2014]

[Buchin et al, to appear]

Methods
B

éz
ie

r
C

ir
cu

la
r

ar
cs

L
in

es

Networks Regions

[Fink et al, 2013]

[Fink et al, 2014]

[Van Goethem et al, 2013]

[Nöllenburg & Wolff, 2010]

[Buchin et al, 2011]

[Drysdale et al, 2008]

[Merrick & Gudmundsson, 2007]

[Cabello et al, 2005]

[Cicerone & Cermignani, 2012]

[Van Goethem et al, 2013]

[Heimlich & Held, 2008][Van Goethem et al, 2014]

[Van Goethem et al, 2015]

[Buchin et al, to appear]

Requirements

Few geometric objects
At most k lines (parameter)

Requirements

Few geometric objects
At most k lines (parameter)

Restricted geometry
Angles in set C (parameter)

Requirements

Few geometric objects
At most k lines (parameter)

Restricted geometry
Angles in set C (parameter)

Topology
Correct neighbors

Requirements

Few geometric objects
At most k lines (parameter)

Restricted geometry
Angles in set C (parameter)

Topology
Correct neighbors

Resemblance
Area preservation

Requirements

Few geometric objects
At most k lines (parameter)

Restricted geometry
Angles in set C (parameter)

Topology
Correct neighbors

Resemblance
Area preservation
Measure something...?

Formalizing “resemblance”?

Let’s optimize symmetric difference

“area covered by exactly one polygon”

Formalizing “resemblance”?

“the best”

Let’s optimize symmetric difference

“area covered by exactly one polygon”

Formalizing “resemblance”?

“the best” “worse”

Let’s optimize symmetric difference

“area covered by exactly one polygon”

Formalizing “resemblance”?

Let’s try again: Fréchet distance

“longest distance between boundaries, accounting for continuity”

Formalizing “resemblance”?

“the best”

Let’s try again: Fréchet distance

“longest distance between boundaries, accounting for continuity”

Formalizing “resemblance”?

“the best” “worse”

Let’s try again: Fréchet distance

“longest distance between boundaries, accounting for continuity”

Formalizing “resemblance”?

“the best” “worse”

Once more: cyclic dynamic time warp distance

“Sum of distances between vertices, accounting for continuity”

Algorithm

Algorithm

1. restrict angles to C

69 edges 184 edges

Algorithm

1. restrict angles to C

2. repeat

3. perform a pair of edge-moves

69 edges 184 edges 68 edges 34 edges

4. until at most k lines

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Edge-moves

3. perform a pair of edge-moves

Preserves topology and angles

Edge-moves

3. perform a pair of edge-moves

Preserves topology and angles

Edge-moves

3. perform a pair of edge-moves

Use pairs to preserve area, but avoid conflicts

Edge-moves

3. perform a pair of edge-moves

Use pairs to preserve area, but avoid conflicts

Edge-moves

3. perform a pair of edge-moves

Use pairs to preserve area, but avoid conflicts

Edge-moves

3. perform a pair of edge-moves

But which pair do we pick?

Smallest area (symmetric difference)

Compensate with nearest along boundary

Termination

Can we always reach k?

4. until at most k lines

Termination

Can we always reach k?

4. until at most k lines

Theorem.
Any nonconvex polygon admits a pair of edge-moves.

⇒ For polygons, we can always reach 2|C|

Termination

Can we always reach k?

4. until at most k lines

Theorem.
Any nonconvex polygon admits a pair of edge-moves.

⇒ For polygons, we can always reach 2|C|

How fast is the algorithm?

Naive: O(n3)

Termination

Can we always reach k?

4. until at most k lines

Theorem.
Any nonconvex polygon admits a pair of edge-moves.

⇒ For polygons, we can always reach 2|C|

How fast is the algorithm?

Using locality of change: O(n2)

Naive: O(n3)

Schematization styles

Do we really need lines?

[Brunet, 1991] [Brunet & Dollfus, 1991]

Circular arcs

Change edge-moves to replacements

Replace sequence of arcs by fewer arcs

Turn lines into arcs

Circular arcs

Change edge-moves to replacements

2-to-1

Replace sequence of arcs by fewer arcs

Turn lines into arcs

Circular arcs

Change edge-moves to replacements

2-to-1

3-to-2

Replace sequence of arcs by fewer arcs

Turn lines into arcs

Curviness

Control curviness

Curviness

Control curviness

Central angle α as weight

Gives curved, regular and flat style

Curviness

Control curviness

Central angle α as weight

Gives curved, regular and flat style

Recovering solutions

Run once, obtain all solutions

1

2

3

4

5
6

7

1 2 3 4 5 6 7

Recovering solutions

Run once, obtain all solutions

1

2

1 2

3

4

5
6

7

3 4 5 6 7

a

a 6

Recovering solutions

Run once, obtain all solutions

1 2

3

4

3 4

5
6

7

5 6 7

a

a

b

b6 5

Recovering solutions

Run once, obtain all solutions

1 2 3 4

b

b

5

5

6

7

6 7

a

a

c

c

6 5

4

Recovering solutions

Run once, obtain all solutions

1 2 3 4

b

5

6

6

7

7

a

a

c

d

c

d6 5

4

3

Recovering solutions

Run once, obtain all solutions

1 2 3 4

b

5 6 7

c

c

d

d

a

a

e

e

6 5

4

3

2

Recovering solutions

Run once, obtain all solutions

1 2 3 4

a

a b

5 6 7

c

d

e

ef

f

6 5

4

3

2

1

Recovering solutions

Run once, obtain all solutions

1 2 3 4

a b

5 6 7

c

d

e

f

a

a

c

d

c

d6 5

4

3

2

1

Lines vs arcs

Straight

Aesthetics Simplicity

Flat Regular Curvy

Recognizability

Lines vs arcs

0.1

0.3

0.5
worth

Straight

Aesthetics Simplicity

Flat Regular Curvy

Recognizability

Lines vs arcs

0.1

0.3

0.5
worth

Straight

Aesthetics Simplicity

Flat Regular Curvy

0.1

0.3

0.5
worth

Recognizability

Lines vs arcs

0.1

0.3

0.5
worth

Straight

Aesthetics Simplicity

100%

60%

20%

Flat Regular Curvy

0.1

0.3

0.5
worth

Recognizability

accuracy

“Nongeographic” schematization

What happens if we get rid of all geography?

Draw a graph G with low complexity

Problem.

Graph complexity

Complexity of a graph G = (V,E)

Usually |V |, |E|, etc.

Graph complexity

Complexity of a graph G = (V,E)

Usually |V |, |E|, etc.

Says nothing about how complex a drawing is

Visual complexity

Planar graphs

Number of geometric objects for drawing

Visual complexity

Planar graphs

Number of geometric objects for drawing

Visual complexity

Planar graphs

Number of geometric objects for drawing

1

Visual complexity

Planar graphs

Number of geometric objects for drawing

2

Visual complexity

Planar graphs

Number of geometric objects for drawing

3

Visual complexity

Planar graphs

Number of geometric objects for drawing

4

Visual complexity

Planar graphs

Number of geometric objects for drawing

5

Visual complexity

Planar graphs

Number of geometric objects for drawing

6

Visual complexity

Planar graphs

Number of geometric objects for drawing

7

Visual complexity

Planar graphs

Number of geometric objects for drawing

8

Visual complexity

Planar graphs

Number of geometric objects for drawing

9

Visual complexity

Planar graphs

Number of geometric objects for drawing

9 line segments for 18 edges

Known results

Lower Upper

S
eg

m
en

ts

Class

Triangulation

Tree

2- and 3-trees 2V 2V

3-connected 2V 5V/2

Planar 16V/3− E

7V/32V

2V

K/2 K/2

[Durocher, Mondal, 2014]

[Durocher, Mondal, 2014]

[Durocher et al, 2013]

[Dujmović et al, 2007]

[Dujmović et al, 2007]

Known results

Lower Upper

S
eg

m
en

ts
C

ir
c.

ar
cs

Class

Triangulation

Tree

2- and 3-trees 2V 2V

3-connected 2V 5V/2

Planar 16V/3− E

7V/32V

2V

K/2 K/2

3-trees

3-connected

E/6

E/6

11E/18

2E/3

[Schulz, 2013]

[Schulz, 2013]

[Durocher, Mondal, 2014]

[Durocher, Mondal, 2014]

[Durocher et al, 2013]

[Dujmović et al, 2007]

[Dujmović et al, 2007]

The remainder of this talk

Line-segment drawings

Planar cubic 3-connected graphs

The remainder of this talk

Line-segment drawings

Two new algorithms

n/2 + 3 segments

Planar cubic 3-connected graphs

[Mondal et al, 2013]

Resolve flaw & improved

The remainder of this talk

Line-segment drawings

Two new algorithms

n/2 + 3 segments

Planar cubic 3-connected graphs

[Mondal et al, 2013]

Resolve flaw & improved

Experimental comparison

Deconstruction algorithm

Deconstruction algorithm

Theorem.

Every graph can be constructed

maintaining a given outer face.

with insertions

from the triangular prism

Deconstruction algorithm

Theorem.

Every graph can be constructed

maintaining a given outer face.

Insertion

with insertions

from the triangular prism

Deconstruction algorithm

Algorithm

1. Draw triangular prism

Deconstruction algorithm

Algorithm

1. Draw triangular prism

2. Construct graph, maintaining drawing

Inner faces are convex

No insertions on outer face

Deconstruction algorithm

Algorithm

1. Draw triangular prism

2. Construct graph, maintaining drawing

Insertion

Deconstruction algorithm

Algorithm

1. Draw triangular prism

2. Construct graph, maintaining drawing

Deconstruction algorithm

Algorithm

1. Draw triangular prism

2. Construct graph, maintaining drawing

Deconstruction algorithm

Algorithm

1. Draw triangular prism

2. Construct graph, maintaining drawing

Insertion

Windmill algorithm

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Windmill algorithm

Algorithm

Pre:

Post: inside of C drawn

cycle C drawn convex

Postprocessing

Set of harmonic equations [Aerts & Felsner, 2013]

u = λv + (1− λ)w, for λ ∈ (0, 1)

v

w

u

Postprocessing

Set of harmonic equations

Solve for uniform edge length, i.e. λ = 1/2

[Aerts & Felsner, 2013]

u = λv + (1− λ)w, for λ ∈ (0, 1)

v

w

u

v

w

u

[Mondal et al, 2013]

[Mondal et al, 2013]

“Grid”

n/2 + 4 segments

6 slopes

(n/2 + 1)2 grid

[Mondal et al, 2013]

“Grid”

n/2 + 4 segments

6 slopes

(n/2 + 1)2 grid

Resolved flaw in algorithm

[Mondal et al, 2013]

“Grid”

n/2 + 4 segments

6 slopes

(n/2 + 1)2 grid

“Min”

n/2 + 3 segments

7 slopes

Not on a grid

Resolved flaw in algorithm

[Mondal et al, 2013]

“Grid”

n/2 + 4 segments

6 slopes

(n/2 + 1)2 grid

“Min”

n/2 + 3 segments

7 slopes

Not on a grid

Resolved flaw in algorithm Reduced to 6 slopes

On a grid

Three algorithms

Deconstruction Windmill [Mondal et al, 2013]

Measuring layout quality

2000 graphs with 24 . . . 30 vertices

Six measures for each graph-algorithm pair

using plantri

Measuring layout quality

2000 graphs with 24 . . . 30 vertices

Six measures for each graph-algorithm pair

Angular resolution

using plantri

Measuring layout quality

2000 graphs with 24 . . . 30 vertices

Six measures for each graph-algorithm pair

Angular resolution

Edge length

using plantri

Measuring layout quality

2000 graphs with 24 . . . 30 vertices

Six measures for each graph-algorithm pair

Angular resolution

Edge length

Face aspect ratio

using plantri

Measuring layout quality

2000 graphs with 24 . . . 30 vertices

Six measures for each graph-algorithm pair

Angular resolution

Edge length

Face aspect ratio

using plantri

Average and worst-case

Angular resolution

DEC-ALT

WIN

MON-GRID

MON-MIN

Average

Minimum
0 π/2

0 π/2

DEC

DEC-ALT

WIN

MON-GRID

MON-MIN

DEC

Edge length

DEC-ALT

WIN

MON-GRID

MON-MIN

Average

Maximum
0 100%

0 100%

DEC

DEC-ALT

WIN

MON-GRID

MON-MIN

DEC

Face aspect ratio

DEC-ALT

WIN

MON-GRID

MON-MIN

Average

Minimum
0 1

0 1

DEC

DEC-ALT

WIN

MON-GRID

MON-MIN

DEC

Experiment summary

WIN

DEC

MON

WIN DEC MON

“Wins”

60 1 2 3 4 5

Experiment summary

WIN

DEC

MON

WIN DEC MON

“Wins” “Wins” minus “Losses”

-6 6-5 -4 -3 -2 -1 0 1 2 3 4 5

WIN DEC MON

Conclusion

Minimal visual complexity

Two new algorithms

Experiments

Fixed and improved [Mondal et al, 2013]

Best depends on measure

Conclusion

Minimal visual complexity

Future work

Closing gap for other classes

Circular arcs

Visual complexity ∼ observer’s assessment?

Visual complexity ∼ cognitive load?

Two new algorithms

Experiments

Fixed and improved [Mondal et al, 2013]

Best depends on measure

Thank you for listening!

Wouter Meulemans <wouter.meulemans@city.ac.uk>

[Van Goethem, Meulemans, Speckmann, Wood, TVCG, 2015]

[Igamberdiev, Meulemans, Schulz, GD, 2015]

[Buchin, Meulemans, Van Renssen, Speckmann, ACM TSAS, to appear]

	sec
	subsec

	sec
	subsec

